NCHRP Project 25-34 / Report 791 "Supplemental Guidance on the Application of FHWA's Traffic Noise Model (TNM)"

Overview and Results for Topography, Ground Zones, Tree Zones and Atmospherics

Christopher Menge

Harris Miller Miller & Hanson Inc.

Transportation Research Board ADC40 Summer Meeting Portsmouth, NH July 21, 2014

Objectives of Research Project 25-34

- Supplement existing guidance for using TNM by identifying Best Practices to accurately, consistently, and efficiently model 9 special highway noise scenarios
- Determine the sensitivity and accuracy of the methods to model 5 other special scenarios
- Synthesize the state of practice for analyzing the effects of (1) wind direction and (2) temperature on sound propagation

Research Topics of NCHRP Project 25-34

- 1. Structure Reflected Noise and Expansion Joint Noise
- 2. Signalized Interchanges, Intersections and Roundabouts
- 3. Area Sources
- 4. Median Barriers
- 5. Multi-lane Highways

- 6. Building Rows
- 7. Topography
- 8. Ground Zones
- 9. Tree Zones
- 10. Wind and Temperature Gradients
- **11. Parallel Barriers**
- **12. Tunnel Openings**

- 1. Determine existence of useful information
- 2. Compile modeling techniques & validation data
- 3. Identify candidate modeling techniques
- 4. Prepare interim technical report & receive comments
- 5. Process existing validation data and/or collect additional data
- 6. Test and evaluate modeling techniques and identify Best Practices
- 7. Prepare final technical report

- Sensitivity analysis performed for several TNM objects and topography-related concerns:
 - Outside edge of pavement horizontal precision
 - Required Terrain Lines along elevated roadways
 - Minimum Terrain Line spacing
 - Terrain Lines: vertical precision
 - Barrier tops: vertical precision
 - Flat-top berms

Topography

- Outside edge of pavement horizontal precision
 - "Shoulder" roadway is recommended, carefully following edge of pavement
- Required Terrain Lines along elevated roadways
 - Roads on fill located at toe of slope
 - Roads on structure: located at ground level just off edge of structure

- Minimum Terrain Line spacing
 - Never closer spacing than 4 feet, to avoid computational errors
 - Do not duplicate triangular regions produced by digital terrain models
- Terrain Lines: vertical precision
 - Keep precision with plus/minus one foot

- Barrier tops: vertical precision
 - Sound levels can be very sensitive to barrier top elevation
 - In final barrier-design studies
 - Carefully specify barrier top <u>elevation</u> for accurate future Leqs
 - Also, carefully determine future ground elevation for accurate insertion loss calculations

- Flat-top berms
 - For greatest accuracy: "Round-off" the edges of flattop berms

- Sensitivity analysis performed and guidance given for aspects of Ground Zones:
 - Size and location of Ground Zones
 - Expanded list of ground types
 - Bodies of water

Ground Zones Best Practices

www.hmmh.com

General size:

- Not needed for small patches (e.g. sidewalks and driveways)
- 20% of source-to-receiver distance for > 1 dBA
- Coordinate precision:
 - High precision not needed in horizontal plane
 - 30-foot change in ground zone width may cause 1 dB change
- Location:
 - Needed near middle of propagation path where ground zone covers >10 to 20% of distance along path

Ground Zones Best Practices

- Expanded set of Effective Flow Resistivity (EFR) values in cgs Rayls
 - Improved match between measured and computed
 - Mostly derived from literature

Ground Type	Avg EFR	Ground Type	Avg EFR	
Powder snow*	10	Dirt	550	
Dry snow	20	Sandy Silt	1,650	
Sugar snow	38	Limestone Chips	2,750	
Granular snow*	40	Old Dirt Road	3,000	
Forest floor	50	Hard Soil*	5,000	
Lawn (11.9 to 16.5% moisture content)	58	Hard-packed Dirt	5,800	
Field (meadow)*	150	Exposed Dirt	6,000	
Lawn (root layer in loamy sand)	188	Asphalt (rain packed)	10,000	
Lawn (rough pasture)	212	Water	10,000	
Lawn*	300	Quarry Dust	12,500	
Lawn (various)	375	Pavement and Water*	20,000	
Soil	278	Asphalt (old, sealed with dust)	27,500	
Sand	473	Concrete	65,000	
Loose Soil*	500	Concrete (painted)	200,000	
Roadside Dirt	550	* TNM's built-in EFR values		

Ground Zones Best Practices

- Use of Expanded EFR values in TNM
 - Designate "custom" ground zones with appropriate EFR value
 - Default ground type from TNM's pull-down list, overlaid with zones of custom EFR values
- Bodies of water
 - Include if water is at middle of propagation path and is more than 10 to 20% of the source-to-receiver distance
 - Include terrain lines and top and bottom of bank
- Distances beyond 500 feet be aware:
 - Soft ground: TNM under-predicts
 - Hard ground: TNM over-predicts

- Sensitivity analysis performed and guidance given for aspects of Tree Zones:
 - Consider modeling narrow tree zones (parallel to roadway) that are 50 to 100 feet deep

Tree Zones

- Reduce needed barrier length & cost
- No overlaid ground zone needed with tree zones
- Consider visibility through tree zone using Fang & Linn equation

www.hmmh.com

Vegetation attenuation (Fang and Linn):

$$\frac{A_{Veg}}{dBA/50ft} = \left[4.08 - 2.87 \log\left(\frac{D_{Vis}}{1ft}\right) + 2.32\log\left(\frac{L_{VegProp}}{1ft}\right)\right]$$

- Compare A_{veg} in dBA / 50 feet to TNM's tree attenuation (compute TNM with and without tree zones)
 - If $A_{veg} \approx A_{tree,TNM} \approx 0 \rightarrow tree zone not needed$
 - If $A_{veg} \thickapprox A_{tree,TNM}$, and both non-zero \rightarrow TNM tree zone is computing well enough
 - If $A_{veg} \neq A_{tree,TNM}$, and both non-zero \rightarrow compare values and choose appropriate tree attenuation

Wind and Temperature Gradients

www.hmmh.com

Sound Propagation under Downwind and Upwind Conditions

Sound Propagation under Temperature Inversion and Lapse

Wind and Temperature Gradients

- Extensive literature review
 - Very few quantitative studies of atmospheric effects on highway noise
 - Among those, limited data universally applicable
- Nord2000 propagation model incorporates wind and temperature gradient effects
 - Atmospheric effects <u>validated</u> through measurements

Wind and Temperature Gradients

- SoundPLAN® prediction program incorporates Nord2000 and TNM implementations
- Nord2000 and TNM show comparable results under calm, neutral atmospheric conditions
- Nord2000 run under a wide range of scenarios to determine atmospheric effects

Wind and Temperature Gradients Variables Run with Nord2000

- Typical 4-lane highway geometry
 - Autos/Truck mix and Autos only
 - Receiver distances: 50, 100, 200, 400, 800, 1600 ft
 - Receiver heights: 5 ft and 15 ft
 - Soft ground and hard ground
 - No barrier and 17-ft high barrier
- Upwind and downwind:
 - Calm, 2.5 m/s (5.6 mph), 5 m/s (11.2 mph)
- Temperature inversion: +0.1 °C/m, +0.5 °C/m
- Temperature lapse: -0.1 °C/m, -0.3 °C/m

Wind and Temperature Gradients Example Results Table

Automobiles and Trucks, Hard Ground, With Noise Barrier												
		Sound Level Difference (dB)										
Receiver Distance (ft) (ft)	Receiver	Wind Condition				Temperature Condition						
	Height (ft)	Moderate Upwind (2.5 m/s)	Strong Upwind (5 m/s)	Moderate Downwind (2.5 m/s)	Strong Downwind (5 m/s)	Weak Lapse (-0.1°C/m)	Strong Lapse (–0.3°C/m)	Weak Inversion (+0.1°C/m)	Strong Inversion (+0.5°C/m)			
50	5	-2	-4	6	11	-1	-1	3	8			
100	5	-2	-4	6	10	-1	-2	3	9			
200	5	-2	-3	5	10	-1	-2	3	10			
400	5	-1	-3	4	9	-1	-2	3	11			
800	5	-2	-6	3	8	-1	-4	2	13			
1600	5	-4	-9	5	9	-3	-11	5	17			
50	15	-3	-5	7	12	-1	-2	3	7			
100	15	-2	-4	6	10	-1	-2	4	9			
200	15	-2	-3	4	8	-1	-2	4	10			
400	15	-1	-2	3	8	-1	-2	4	12			
800	15	-1	-2	3	7	-1	-3	3	14			
1600	15	-1	-5	6	9	-2	-10	6	17			

Wind and Temperature Gradients Example Results Graph

Team Members & Acknowledgements

- Topography, Ground Zones and Tree Zones
 Grant Anderson
- Wind and Temperature Gradients HMMH
 - Christopher Menge principal investigator
 - Bradley Nicholas literature review, interim report
 - Timothy Johnson SoundPLAN/TNM modeling, final report
 - Rhea Gundry, HMMH SoundPLAN modeling